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Abstract The limit log-infinitely divisible multifractals of Muzy and Bacry (Phys. Rev. E
66:056121, 2002) are reviewed and shown to possess novel invariance relations that translate
into functional Feynman-Kac equations for the corresponding probability distributions. In
the special case of the limit lognormal process of Mandelbrot (in Statistical Models and Tur-
bulence, M. Rosenblatt, C. Van Atta (Eds.), Springer, New York, 1972), the limit distribution
is represented exactly in an operator form using the technique of intermittency expansions.
A novel representation for the Mellin transform of the limit distribution is derived and re-
lated to the Hurwitz zeta function. For application, the cumulants of the logarithm of the
limit lognormal distribution are computed explicitly.

Keywords Multifractals · Intermittency · Infinite divisibility · Selberg integral · Hurwitz
zeta · Riemann zeta

1 Introduction

The limit lognormal process was originally introduced and reviewed by Mandelbrot [15, 17]
in the context of energy dissipation in intermittent turbulence, and formalized in a series of
papers by Kahane [12, 13], [14]. It was re-introduced by Bacry et al. [1], who also con-
structed in [19] a whole new family of limit log-infinitely divisible multifractal stochas-
tic processes that includes the limit lognormal process as a special case. The interest in
this family of processes derives from their remarkable property of stochastic self-similarity
with log-infinitely divisible (logID for short) multipliers. In addition, they are grid-free and
have stationary increments unlike the canonical multiplicative cascades [16]. Stochastic self-
similarity appears in many areas of science under the guise of empirically observed long-
range dependence and multiscaling. Examples range from the physics of turbulence [18, 26]
to geophysics [25] to human heartbeat dynamics and physiology [10, 11]. Multifractals are
an essential mathematical tool for modeling such phenomena. The limit logID processes are
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of additional interest due to their connection with the KPZ formula, confer [5] and [24], and
the limit lognormal process specifically as its positive integral moments are given, confer [2],
by the celebrated Selberg integral, which generates substantial interest, confer [9].

This paper deals with the outstanding problem of characterizing the distribution of the
limit logID processes. Before we describe the contribution of this paper, we summarize
briefly what is already known. The limit lognormal process, along with the other limit logID
processes, is defined as the zero-scale limit of the exponential functional of the underly-
ing stationary normal (ID in the general case) process with strongly dependent increments.
In our previous work [21] we introduced the technique of functional Feynman-Kac equa-
tions, which translates the invariances of this underlying process in the normal case with
respect to scale, decorrelation length, and intermittency parameters into the corresponding
functional equations for the limit lognormal process. This correspondence implies that the
scale parameter invariance is equivalent to the property of stochastic self-similarity of the
limit lognormal process. The decorrelation length invariance is responsible for how the limit
distribution transforms under a particular change of the probability measure. The intermit-
tency parameter invariance quantifies how the limit distribution behaves as a function of the
intermittency parameter and thereby captures the limit distribution. We used this invariance
in [22] to derive the general rule of intermittency differentiation. This rule in a functional
equation for the derivatives of the expectation of an arbitrary smooth function of the limit
lognormal distribution with respect to the intermittency parameter. By formally re-summing
the resulting Taylor series, we obtained a power series expansion of any such functional with
universal coefficients that are independent of the function. In the special case of the Mellin
transform [23] we succeeded in computing the coefficients of the corresponding intermit-
tency expansion exactly and showed that it is the small intermittency asymptotic expansion
of a particular integral. We summed it by a moment constant method and thus obtained an
explicit closed-form formula for the Mellin transform. We then verified that the resulting
formula reproduces the known values of the integral moments of the limit lognormal distri-
bution and is in fact the Mellin transform of a valid positive probability distribution. Hence,
we effectively introduced a new probability distribution with the properties that its integral
moments at arbitrary intermittency and Mellin transform asymptotic in the limit of small
intermittency coincide with the corresponding quantities of the limit lognormal distribution.
It is our conjecture that the two are one and the same.

The contribution of this paper is to review the theory of limit logID processes as well as
the technique of intermittency expansions in the limit lognormal case, and then extend them
in several directions. First, we show that the invariances with respect to scale, decorrela-
tion length, and intermittency parameters are not specific to the limit lognormal process and
are in fact shared by all limit logID processes. Moreover, we extend the technique of func-
tional Feynman-Kac equations to the general case by translating the first two invariances
into the corresponding functional equations and interpreting them in the same way as in the
limit lognormal case. Second, we give an exact solution for the intermittency expansion of
an arbitrary transform of the limit lognormal distribution by appropriately generalizing the
known solution for the Mellin transform. The solution is again regularized by means of its
small intermittency asymptotic, and the resulting operator solution is shown to be consistent
with the closed-form formula for the Mellin transform. Third, we derive a new formula for
the Mellin transform by representing its logarithm in the form of a contour integral with an
infinite sum of Hurwitz zeta values in the integrand. This representation allows us to ex-
plicitly compute the cumulants of the logarithm of the limit lognormal distribution, which
are of particular interest as the moment problem for the logarithm is determinate, unlike the
moment problem for the distribution itself, confer [23].
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The plan of the paper is as follows. In Sect. 2 we review the general limit logID con-
struction. In Sect. 3 we state and prove invariances of this construction with respect to scale,
decorrelation length, and intermittency parameters in Theorem 3.1 and then explain how
they can all be translated into the corresponding functional equations. This is carried out in
detail in the case of the first two invariances. In Sect. 4 we review our technique of intermit-
tency expansions for the limit lognormal distribution and describe the particular case of the
Mellin transform. In Sect. 5 we solve the intermittency expansion of the general transform
of the limit lognormal distribution in Corollary 5.1 and provide its regularization, which is
consistent with that of the Mellin transform, in Theorem 6.3 in Sect. 6. Section 7 is devoted
to the derivation of a new representation of the Mellin transform in Theorem 7.2 and calcu-
lation of the cumulants of the logarithm of the limit lognormal distribution in Corollary 7.1.
Concluding remarks are presented in Sect. 8.

2 The Limit LogID Construction

We begin this section by giving a review of the limit log-infinitely divisible (logID) construc-
tion following Bacry and Muzy [3] and [19], except for several notation-related changes to
be explained below. Detailed reviews of the special case of the limit lognormal process can
be found in [20] and [21].

The starting point is an ID independently scattered random measure P on the time-scale
plane H+ = {(t, l), l > 0}, distributed uniformly with respect to the intensity measure ρ

(denoted by μ in [19])

ρ(dt dl) = dt dl/ l2. (1)

The infinite divisibility of P means that P (A) is an infinitely divisible random variable
for measurable subsets A ⊂ H+. The property of being independently scattered means that
P (A) and P (B) are independent if A and B do not intersect. Uniform distribution with
respect to ρ means that the characteristic function of P (A) is given by

E[eiqP (A)] = eμφ(q)ρ(A), q ∈ R, (2)

where μ > 0 is the intermittency parameter1 and φ(q) is the logarithm of the characteristic
function of the underlying ID distribution and is given by the Lévy-Khinchine formula [6]

φ(q) = imq − 1

2
q2 +

∫
R\{0}

[eiqy − 1 − iqy1{|y|<1}]Π(dy), (3)

where the spectral measure Π(y) satisfies
∫

R\{0}(1∧y2)Π(dy) < ∞. It is assumed that φ(q)

is extendible to �(q) ≥ −1, which restricts the class of permissible spectral measures. The
mean m needs to be chosen in such a way that

φ(−i) = 0 so that E[eP(A)] = 1 ∀A ⊂ H+. (4)

For example, in the limit lognormal case, we have

φ(q) = −i
q

2
− q2

2
. (5)

1What we call μ is denoted λ2 in [19]. Also, in [19] it is taken to be part of φ(q), whereas we find it essential
to separate the two. The rationale for this change will become apparent in Sect. 3.



On the Limit Lognormal and Other Limit Log-Infinitely Divisible Laws 893

Next, following Schmitt and Marsan [27] and Barral and Mandelbrot [4], Bacry and
Muzy [19] introduce special conical sets AL,ε(u) in the time-scale plane defined by

AL,ε(u) =
{
(t, l) | |t − u| ≤ l

2
for ε ≤ l ≤ L and |t − u| ≤ L

2
for l ≥ L

}
. (6)

The constant L is the decorrelation length as the sets AL,ε(u) and AL,ε(v) intersect iff
|u − v| < L. The last preparatory step is to define a family of ID processes with dependent
increments ωμ,L,ε(u) by

ωμ,L,ε(u) = P (AL,ε(u)). (7)

It is clear that ωμ,L,ε(u) and ωμ,L,ε(v) are dependent in general if |u − v| < L and are in-
dependent otherwise. With probability one, the process u → ωμ,L,ε(u) has right-continuous
trajectories with finite left limits.

Given these preliminaries, the limit logID process Mμ,L(t) is defined to be the zero scale
limit ε → 0 of finite scale processes Mμ,L,ε(t) that are themselves defined to be the expo-
nential functional of the process u → ωμ,L,ε(u)

Mμ,L,ε(t) =
∫ t

0
exp(ωμ,L,ε(u)) du. (8)

Strictly speaking, Mμ,L,ε(dt) is a random measure on the real line, whose weak a.s. con-
vergence to a nondegenerate limit measure Mμ,L(dt) was formally established in [3] based
on the theory of convergence of a certain class of positive martingales developed by Ka-
hane [13]. Indeed, the martingale property of ε → Mμ,L,ε(dt), namely,

E[Mμ,L,ε′(t) | Fε] = Mμ,L,ε(t), ε′ < ε, (9)

where Fε is the sigma algebra generated by P (dt dl), l > ε, is a direct corollary of the ran-
dom measure P being independently scattered and (4). The limit measure is nondegenerate
in the sense of E[Mμ,L(t)] = t under the assumption2 that

1 + iμφ′(−i) > 0. (10)

The positive moments of Mμ,L(t) are finite under the following necessary and sufficient
conditions

q − μφ(−iq) > 1 =⇒ E
[
M

q

μ,L(t)
]
< ∞,

E
[
M

q

μ,L(t)
]
< ∞ =⇒ q − μφ(−iq) ≥ 1.

(11)

The combination q − φ(−iq) that appears in (11) is known as the multiscaling spectrum.
Its significance will be clarified in the next section, confer (32) below. We refer the reader
to [3] for further details of their construction and all the proofs.

We conclude our review of the limit logID construction with a fundamental lemma,
whose proof the reader can also find in [3]. Let the function ρL,ε(u, v) be defined by

ρL,ε(u, v) = ρ(AL,ε(u) ∩ AL,ε(v)). (12)

2The condition given in [3] is less stringent than (10), which is however sufficient in most cases of interest
such as those of the limit lognormal, compound Poisson, etc. processes.
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Clearly, ρL,ε(u, v) is an even function of u − v so that we can write ρL,ε(u, v) =
ρL,ε(|u − v|). It is easy to show from (1) and (6) that it is given by

ρL,ε(u) =
{

log(L/|u|) if ε ≤ |u| ≤ L,

1 + log(L/ε) − |u|/ε if |u| < ε,
(13)

and it is identically zero for |u| > L.

Lemma 2.1 Given t1 ≤ · · · ≤ tn and q1, . . . , qn, the joint characteristic function of
ωμ,L,ε(ti), i = 1, . . . , n, is

E

[
exp

(
i

n∑
i=1

qiωμ,L,ε(ti )

)]
= exp

(
μ

n∑
j=1

j∑
k=1

αj,kρL,ε(tk − tj )

)
, (14)

for some coefficients αjk that involve values of φ(q) only but not μ, L, ε or ti . In addition,

n∑
j=1

j∑
k=1

αj,k = φ

(
n∑

i=1

qi

)
. (15)

An explicit formula for αjk is given in [3]. The significance of this lemma cannot be overem-
phasized as it is the source of all known invariances of the ωμ,L,ε(t) process as explained in
the next section. In addition, it is easy to see that Lemma 2.1 determines the positive integral
moments of Mμ,L(t).

3 Invariances as Functional Feynman-Kac Equations

In this section we consider the link between invariances of the ωμ,L,ε(t) process and func-
tional Feynman-Kac equations, which are known to hold in the limit lognormal case, con-
fer [21], and explain how they can be extended to the general limit logID case.

Introduce a Lévy process (a stochastic process with stationary, independent increments)
δ → X(δ) that is independent of the t → ωμ,L,ε(t) process and defined in terms of the ID
distribution associated with φ(q) as follows

E[eiqX(δ)] = eδφ(q), X(0) = 0. (16)

The existence and uniqueness of X(δ) follow from the general theory of ID processes, con-
fer [6]. We now proceed to our result on the general invariances. As in Sect. 2, we write
ωμ,L,ε(t) for the process defined in (7) and ω̄δ,eL,ε(t) for an independent copy of this process
with the intermittency δ, decorrelation length eL, and scale ε, where e is the base of the
natural logarithm.

Theorem 3.1 Fix μ, L, ε, and δ. Then, there hold the following identities, which are un-
derstood to be equalities in law of stochastic processes in t on the interval t ∈ [0,L],

X(δ) + ωμ,L,ε(t) = ωμ,Leδ/μ,ε(t), (17)

X(δ) + ωμ,L,ε(t) = ωμ,L,εe−δ/μ(te−δ/μ), (18)

X(δ) + ωμ,L,ε(t) = ωμ−δ,L,ε(t) + ω̄δ,eL,ε(t). (19)

In (19), δ needs to satisfy δ < μ.
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Their natural interpretation is that (17) is the invariance with respect to the decorrelation
length, (18) is the invariance with respect to the scale parameter, and (19) is the invariance
with respect to the intermittency parameter. We note that (18) first appeared in an equivalent
form in [19]. The other invariances are new.

Proof The proof is based on Lemma 2.1 and the properties of the function ρL,ε(t) in (12).
Given |t | < L, it is easy to see from (13) that ρL,ε(t) satisfies

δ + μρL,ε(t) = μρLeδ/μ,ε(t), (20)

δ + μρL,ε(t) = μρL,εe−δ/μ(te−δ/μ), (21)

δ + μρL,ε(t) = (μ − ρ)ρL,ε(t) + δρeL,ε(t). (22)

Each identity translates into the corresponding identity for the ωμ,L,ε(t) process by virtue of
Lemma 2.1. For example, to prove (17), pick t1 < · · · < tn < L and write

E

[
exp

(
i

n∑
i=1

qiωμ,Leδ/μ,ε(ti )

)]
= exp

(
μ

n∑
j=1

j∑
k=1

αj,kρLeδ/μ,ε(tk − tj )

)

= exp

(
μ

n∑
j=1

j∑
k=1

αj,kρL,ε(tk − tj )

)
exp

(
δ

n∑
j=1

j∑
k=1

αj,k

)

= E

[
exp

(
i

n∑
i=1

qiωμ,L,ε(ti)

)]
E

[
exp

(
i

(
n∑

i=1

qi

)
X(δ)

)]
.

(23)

Thus, the processes on the left- and right-hand sides of (17) have the same finite-dimensional
laws on the interval t ∈ [0,L]. Hence they are equal in law because right-continuous
processes with finite left limits are completely characterized by their finite-dimensional dis-
tributions, confer Sect. 28.4 in [8]. The proof of (18) and (19) goes through verbatim. �

The significance of Theorem 3.1 is that each of the invariances in Theorem 3.1 can be
translated into a functional Feynman-Kac equation for the limit process. In other words, we
wish to establish some equivalents of the classical Feynman-Kac formula for diffusions in
our case of the exponential functional of a strongly nonmarkovian process. The idea of such
equations was introduced in [21] in the special case of the underlying ID distribution being
normal. Our goal here is to show how such equations can be derived in general.

The starting point is the notion of the generator L of the Lévy process X(δ) that is defined
by its action on test functions as follows

(Lf )(x) = d

dδ

∣∣∣∣
δ=0

E[f (X(δ) + x)]. (24)

An explicit formula for it in terms of the Lévy-Khinchine formula in (3) is well-known,
confer [6], Sect. I.2. We only need its action on functions of the special form f (x) = v(zex)

at x = 0. It then becomes an integro-differential operator acting on z

(Lv)(z) = mzv′(z) + 1

2
[zv′(z) + z2v′′(z)]

+
∫

R\{0}
[v(zey) − v(z) − yzv′(z)1{|y|<1}]Π(dy). (25)
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The following proposition translates (17) into the corresponding functional equation. For
concreteness, we work with the Laplace transform of Mμ,L(t), that is, given z > 0 and
t < L, and dropping μ from the list of arguments for brevity, we set

v(z, t,L) = E[exp(−zMμ,L(t))]. (26)

From now on it is understood that L acts only on the z variable as in (25).

Proposition 3.1 The Laplace transform v(z, t,L) satisfies

(Lv)(z, t,L) = L

μ

∂

∂L
v(z, t,L). (27)

This is the functional form of the invariance in (17).

Proof The idea of the proof is to evaluate the action of the generator L on the finite-scale
Laplace transform vε(z, t,L) = E[exp(−zMμ,L,ε(t))] in two ways by means of (17) and (24)
on the one hand and (25) on the other, and then take the zero scale limit. The action of L in
terms of (25) is immediate

d

dδ

∣∣∣∣
δ=0

E[vε(ze
X(δ), t,L)] = (Lvε)(z, t,L). (28)

On the other hand, we have by (17)

d

dδ

∣∣∣∣
δ=0

E[vε(ze
X(δ), t,L)] = d

dδ

∣∣∣∣
δ=0

E
[

exp

(
−zeX(δ)

∫ t

0
exp(ωμ,L,ε(s)) ds

)]

= d

dδ

∣∣∣∣
δ=0

E
[

exp

(
−z

∫ t

0
exp(ωμ,Leδ/μ,ε(s)) ds

)]

= L

μ

∂

∂L
vε(z, t,L). (29)

Letting ε → 0 completes the proof. �

The functional form of the invariance in (18) is obtained by the same type of argument
starting with (28) and using E[vε(ze

X(δ), t,L)] = vεe−δ/μ(zeδ/μ, te−δ/μ,L).

Proposition 3.2 The Laplace transform v(z, t,L) satisfies

(Lv)(z, t,L) =
(

z

μ

∂

∂z
− t

μ

∂

∂t

)
v(z, t,L). (30)

We note that Proposition 3.2 is equivalent to the statement of stochastic self-similarity of the
limit process

Mμ,L(t) = t

L
exp(Xμ logL/t )Mμ,L(L), (31)

understood as the equality of random variables in law at fixed t < L. This is the form, in
which it was given originally in [19]. It now follows from (16) and (31) that the moments
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obey the multiscaling law for q such that E[Mq

μ,L(L)] < ∞

E
[
M

q

μ,L(t)
] =

(
t

L

)q−φ(−iq)

E
[
M

q

μ,L(L)
]
, t < L. (32)

Hence, q → q −φ(−iq) is the multiscaling spectrum of the limit process. It must be empha-
sized that self-similarity alone says nothing about the joint distribution and does not capture
the law of Mμ,L(L) but only of Mμ,L(t) in terms of Mμ,L(L). This is clear from (31). This
is also clear from (30) as it can only be solved backward in time.

Proposition 3.1 captures two features of the limit distribution Mμ,L(L) that go beyond
self-similarity. These features are most naturally stated in terms of the Laplace transform
v(z,L) of Mμ,L(L),

v(z,L) = E[exp(−zMμ,L(L))], (33)

that is, v(z,L) = v(z,L,L). Also, let us define a new probability measure that is defined in
terms of the original probability measure by means of

Ẽ[·] = lim
ε→0

E[· exp(ωμ,1,ε(1))]. (34)

It is well-defined due to (4) and (7).

Corollary 3.1 The Laplace transform v(z,L) = v(zL) is a function of zL. It satisfies

(Lv)(z) − z

μ

∂

∂z
v(z) = z

μ
Ẽ[exp(−zMμ,1(1))]. (35)

Proof As the left-hand sides of (27) and (30) are the same, we obtain

z
∂

∂z
v(z, t,L) − t

∂

∂t
v(z, t,L) = L

∂

∂L
v(z, t,L). (36)

On the other hand, it is clear that

∂

∂L
v(z,L) = d

dL
v(z,L,L) = ∂

∂t
v(z, t,L)|t=L + ∂

∂L
v(z, t,L)|t=L. (37)

It follows from (36) that

z
∂

∂z
v(z,L) = L

∂

∂L
v(z,L). (38)

Hence, v(z,L) = v(zL). On the other hand, combining (27), (37), and (38), we get

(Lv)(zL) − z

μ

∂

∂z
v(zL) = −L

μ
lim
ε→0

∂

∂t

∣∣∣∣
t=L

E
[

exp

(
−z

∫ t

0
eωμ,L,ε(s) ds

)]

= zL

μ
lim
ε→0

[
exp

(
−z

∫ L

0
eωμ,L,ε(s) ds

)
eωμ,L,ε(L)

]
. (39)

The result follows by setting L = 1. �

We conclude that the informational content of Proposition 3.1 is that it quantifies how
the limit distribution Mμ,1(1) behaves under the change of measure specified by (34). In
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addition, the fact that v(z,L) is a function of zL means that we have the following equality
of random variables in law

Mμ,L(L) = LMμ,1(1). (40)

In other words, the dependence of Mμ,L(L) on the decorrelation length is essentially trivial
so that (35) involves only the z variable. Finally, we know the distribution of Mμ,L(t) for
t < L in terms of that of Mμ,L(L) by Proposition 3.2, hence the primary unknown is
Mμ,1(1). Henceforth, we will denote this random variable by Mμ and will write Mμ(t)

for Mμ,1(t).

It is worth making a comment about the appellation ‘functional Feynman-Kac.’ The
‘Feynman-Kac’ part comes from the fact that the technique that was illustrated in Propo-
sitions 3.1 and 3.2 gives the classical Feynman-Kac equation for the exponential functional
of Brownian motion when applied to the invariance B(s) + B̄(δ) = B(s + δ) of Brownian
motion. The ‘functional’ part has to do with the fact that (35) is nonlocal, i.e. involves the
whole path of the process as opposed to only its value at t = 1. This becomes clear if we
try to re-write the Ẽ expectation with respect to the original measure. We refer the reader
to [21, Eq. (47)], where this is done explicitly in the limit lognormal case. Nonlocality is
also apparent in the next section.

4 Review of Intermittency Differentiation

The distribution of Mμ is determined by the intermittency parameter invariance in (19).
Conceptually, it is easy to see that by evaluating the derivative in (28) in two ways as we did
in the proof of Proposition 3.1 except now using (19) instead of (17), we obtain an equa-
tion for intermittency differentiation. By iterating this equation, we then obtain a formal
power series expansion with some universal coefficients depending only on the underlying
ID distribution. These coefficients can subsequently be determined by applying the expan-
sion to the positive integral moments of Mμ, which can be computed using Lemma 2.1.
This procedure thus recovers the limit distribution from the dependence of its moments on
the intermittency parameter, at least formally. The resulting formal intermittency expansion
may or may not be convergent and needs to be regularized in the latter case, which is the
main drawback of our method. In this section we will summarize how this method works in
the limit lognormal case and develop our operator solution in Sect. 5. Regularization will be
treated in Sect. 6.

The positive integral moments of Mμ were shown in [2] to be given by the celebrated
Selberg integral, confer [28]. Given integral l such that 2 ≤ l < 2/μ,

E[Ml
μ] =

∫ 1

0
· · ·

∫ 1

0

l∏
i<j

|si − sj |−μ ds(l) =
l−1∏
k=0

Γ (1 − (k + 1)μ/2)Γ 2(1 − kμ/2)

Γ (1 − μ/2)Γ (2 − (l + k − 1)μ/2)
, (41)

which from now on we will denote by Sl(μ).

Let F(x) be an arbitrary smooth function that does not involve the intermittency parame-
ter 0 ≤ μ < 13 and let F (k)(x) denote its kth derivative. Our results on general intermittency
expansions established [22] are summarized in the following propositions.

3Nondegeneracy is guaranteed by μ < 2, confer (10), the restriction of μ < 1 ensures the finiteness of the
2nd moment, confer (11).



On the Limit Lognormal and Other Limit Log-Infinitely Divisible Laws 899

Consider the expectation of a general functional of the limit lognormal process

v(μ,f,F ) � E
[
F

(∫ 1

0
eμf (s) dMμ(s)

)]
, (42)

where f (s) is an arbitrary continuous function that does not involve μ. This functional is
path-dependent unless f ≡ 0, its somewhat peculiar functional form is motivated by the
fact that this functional form is invariant under intermittency differentiation. The integra-
tion with respect to the limit measure dMμ(s) is understood in the sense of ε → 0 limit
so that v(μ,f,F ) = limε→0 vε(μ,f,F ) and vε(μ,f,F ) � E[F(

∫ 1
0 eμf (s)dMμ,ε(s))] with

dMμ,ε(s) as in (8) with L = 1. Also, let g(s1, s2) be defined by

g(s1, s2) � − log |s1 − s2|. (43)

Its significance is that limε→0 Cov(ωμ,1,ε(s1),ωμ,1,ε(s2)) = μg(s1, s2) on 0 < |s1 − s2| < 1.

Finally, we will use ⊗k to denote the k-dimensional unit cube [0,1]× · · ·× [0,1]. Then, we
have the following general rule of intermittency differentiation.

Theorem 4.1 The expectation v(μ,f,F ) is invariant under intermittency differentiation
and satisfies

∂

∂μ
v(μ,f,F ) =

∫
⊗1

v(μ,f + g(·, s),F (1))eμf (s)f (s) ds

+ 1

2

∫
⊗2

v(μ,f + g(·, s1) + g(·, s2),F
(2))

× eμ(f (s1)+f (s2)+g(s1,s2))g(s1, s2) ds(2). (44)

The mathematical content of (44) is that differentiation with respect to the intermittency
parameter μ is equivalent to a combination of two functional shifts induced by the g func-
tion. The single-integral term corresponds to the exponential prefactor in (42), whereas the
double-integral term corresponds to the intrinsic dependence of Mμ(t) on μ. It is clear that
both terms in (44) are of the same functional form as the original functional in (42) so that
Theorem 4.1 allows us to compute derivatives of all orders.

Proposition 4.1 The expectation E[F(Mμ)] has the formal expansion

E[F(Mμ)] = F(1) +
∞∑

n=1

μn

n!

[
2n∑

k=2

F (k)(1)Hn,k

]
. (45)

The universal expansion coefficients Hn,k, n = 1,2,3, . . . , are given by the binomial trans-
form of the derivatives of the Selberg integral

Hn,k = (−1)k

k!
k∑

l=2

(−1)l

(
k

l

)
∂nSl

∂μn

∣∣∣∣
μ=0

. (46)

Proposition 4.2 The expansion coefficients Hn,k satisfy

Hn,k = 0 ∀k > 2n. (47)
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Corollary 4.1 There holds the following formal expansion in terms of the derivatives of
moment-related expectations of the process

E[F(Mμ)] = F(1) +
∞∑

n=1

μn

n!

[
2n∑

k=2

F (k)(1)

k!
∂n

∂μn

∣∣∣∣
μ=0

E[(Mμ − 1)k]
]
. (48)

The representation in (48) reveals an essential feature of the structure of our expansions.
We see that (48) is an exactly renormalized expansion in the moments of Mμ. Indeed, it is
easy to see that if the positive moments of all orders were finite and Taylor expandable in μ,

then (48) would be the same as the naive expansion4 in the moments E[F(Mμ)] = F(1) +∑∞
k=1 F (k)(1)E[(Mμ − 1)k]/k!. Unlike the naive expansion, however, all the coefficients

in (48) are finite because the derivatives are taken at μ = 0, and Sl(μ) is finite so long as
l < 2/μ. Moreover, our renormalization is exact as the expansion in (48) is not ad hoc but
is rather derived from the exact functional equation in Theorem 4.1.

The main result of [23] was to explicitly calculate the intermittency expansion for the
Mellin transform (complex moments) of Mμ. The moments correspond to F(x) = xq in (45)
for some given q ∈ C. By Proposition 4.1, the intermittency expansion for the moments is

E
[
Mq

μ

] = 1 +
∞∑

n=1

μn

n! fn(q), (49)

fn(q) =
∞∑

k=2

(q)k Hn,k, n = 1,2,3, . . . . (50)

As usual, (q)k denotes the ‘falling factorial’ (q)k � q(q − 1)(q − 2) · · · (q − k + 1). Note
that the upper limit of summation has been extended to infinity by Proposition 4.2. As
usual, ζ(s)5 denotes the Riemann zeta function, Bn(s) the nth Bernoulli polynomial, and
Yn(x1, . . . , xn) the complete exponential Bell polynomial of order n.

Theorem 4.2 Let f0(q) = 1 and define the polynomials br(q), r = 0,1,2, . . .

br (q) = 1

2r+1

[
ζ(r + 1)

[
Br+2(q + 1) + 2Br+2(q) − 3Br+2

r + 2
− q

]

+ (ζ(r + 1) − 1)

[
Br+2(q − 1) − Br+2(2q − 1)

r + 2

]]
. (51)

Then, fn(q) satisfies the recurrence

fn+1(q) = n!
n∑

r=0

fn−r (q)

(n − r)! br(q) (52)

and is given explicitly in terms of Yn by

fn(q) = Yn(b0(q)0!, b1(q)1!, . . . , bn−1(q)(n − 1)!). (53)

4To see this, note that the k sum in (48) can be extended to infinity due to ∂n/∂μn |μ=0 E[(Mμ − 1)k] ≡
k!Hn,k = 0 ∀k > 2n and n ≥ 1 by Proposition 4.2.
5We will write ζ(1) to denote Euler’s constant. It never enters any of the final formulas as the coefficient it
multiplies is identically zero throughout this paper.
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The moments have the following exact formal representation

E
[
Mq

μ

] = exp

( ∞∑
r=0

μr+1

r + 1
br(q)

)
, q ∈ C. (54)

The series
∑∞

r=0 μr+1 br(q)/(r + 1) is divergent in general with the exception of a finite
range of positive and negative integral q, confer Theorem 6.1 below. This means that the
Mellin transform of Mμ is not analytic in the intermittency parameter, and (54) ought to be
interpreted as its asymptotic expansion. We will regularize this expansion along with the
general expansion in (58) below in Sect. 6.

5 Operator Solution of the General Transform

In this section we will determine the intermittency expansion of the general transform by ex-
tending the Mellin transform recurrence in Theorem 4.2 and then solving the new recurrence
in an operator form.

Consider the general transform of the form E[G(s + logMμ)] for some fixed constant s.

The corresponding intermittency expansion is

E[G(s + logMμ)] =
∞∑

n=0

Gn(s)
μn

n! . (55)

The main result of this section is the following theorem and its corollary, which completely
characterize the expansion in (55). Recall the definition of the polynomials br(q) in (51).

Theorem 5.1 The coefficients Gn(s) of the general intermittency expansion satisfy the re-
currence

Gn+1(s) =
n∑

r=0

n!
(n − r)!br

(
d

ds

)
Gn−r (s), G0(s) = G(s). (56)

Corollary 5.1

Gn(s) = Yn

(
0!b0

(
d

ds

)
, . . . , (n − 1)!bn−1

(
d

ds

))
G(s), (57)

E[G(s + logMμ)] = exp

( ∞∑
r=0

μr+1

r + 1
br

(
d

ds

))
G(s). (58)

The proof will be given in a series of lemmas. We begin with a lemma that gives a closed-
form expression for the universal expansion coefficients Hn,k. Let slk and Slk denote Stirling
numbers of the first and second kind, respectively, the polynomials fn(q) be as in (53), and
f (l)

n (0) denote their derivatives at q = 0.

Lemma 5.1 The universal expansion coefficients Hn,k satisfy

Hn,k =
2n∑
l=2

Slk

l! f (l)
n (0), k = 2,3,4, . . . . (59)
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Proof The starting point is (50). Differentiating it with respect to q, we obtain

f (l)
n (0) = l!

∞∑
k=2

skl Hn,k. (60)

The upper limit of summation is formally extended to infinity by Proposition 4.2. The result
now follows by the inversion property of Stirling numbers. �

Corollary 5.2 The derivatives f (l)
n (0) satisfy

f (l)
n (0) = 0 ∀l > 2n. (61)

This follows from Proposition 4.2, (60), and the fact that skl = 0 if k < l.

Lemma 5.2 The coefficients Gn(s) satisfy

Gn(s) =
2n∑
l=0

G(l)(s)

l! f (l)
n (0). (62)

Proof Fix s and define F(x) = G(s + logx). Then, the coefficients F (k)(1) that enter (45)
are given by

F (k)(1) =
k∑

p=0

skp G(p)(s). (63)

Substituting this equation and (59) into the intermittency expansion, extending the upper
limit of the l sum to infinity by Corollary 5.2, changing the order of summation, and making
another use of Stirling inversion, we obtain

Gn(s) =
∞∑

k=2

Hnk

[
k∑

p=0

skp G(p)(s)

]

=
∞∑
l=2

1

l!f
(l)
n (0)

[ ∞∑
k=2

k∑
p=0

Slk skp G(p)(s)

]

=
∞∑
l=2

1

l!f
(l)
n (0)[G(l)(s) − G(1)(s)]. (64)

Finally, the polynomials fn(q) have the property

fn(0) = fn(1) = 0 ∀n ≥ 1. (65)

Hence,

f (1)
n (0) = −

∞∑
l=2

1

l!f
(l)
n (0) ∀n ≥ 1. (66)

The result follows. �
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We can now give the proof of Theorem 5.1.

Proof By Lemma 5.2 and Corollary 5.2 we can write

Gn+1(s) =
∞∑
l=0

G(l)(s)

l! f
(l)

n+1(0). (67)

Substituting (52) and changing the order of summation (all the sums involved are finite
despite notation), we have

Gn+1(s) = n!
n∑

r=0

1

(n − r)!

[ ∞∑
p=0

b(p)
r (0)

∞∑
l=p

(
l

p

)
G(l)(s)

l! f
(l−p)
n−r (0)

]

= n!
n∑

r=0

1

(n − r)!

[ ∞∑
p=0

b(p)
r (0)

1

p!
∞∑
l=0

G(p+l)(s)

l! f
(l)
n−r (0)

]

= n!
n∑

r=0

1

(n − r)!

[ ∞∑
p=0

b(p)
r (0)

1

p!
dp

dsp

]
Gn−r (s). (68)

The last line was obtained by differentiating (62) with the index n − r p times. The result
follows. �

The proof of Corollary 5.1 is now quite simple.

Proof The key observation is that the operators br(d/ds) are commuting because br(q)

are polynomials with constant coefficients in q, confer (51). Now, the recursion relation of
complete Bell polynomials, confer [7], Chap. 11, is

Yn+1(x1, . . . , xn+1) =
n∑

r=0

(
n

r

)
Yn−r (x1, . . . , xn−r )xr+1, Y0 = 1. (69)

This recursion shows that (57) follows from (56). Equation (58) follows from the well-
known formula for the generating function of Yn, confer [7], Chap. 11. �

The significance of Theorem 5.1 is that it generalizes the recurrence in Theorem 4.2 and
shows that the polynomials br(q) play a fundamental role not only for the Mellin transform
but in fact for the general transform. The analogy of the general and Mellin transforms ex-
tends much further in that the solution for the general transform in Corollary 5.1 is obtained
by replacing q with d/ds in the solution for the Mellin transform in (53) and (54). Thus, (58)
is an exact operator solution for the general intermittency expansion in (55). It is obvious
that (58) reproduces the Mellin transform expansion in (54) by taking G(s) = exp(qs) for
some fixed q ∈ C and using

br

(
d

ds

)
eqs = br(q) eqs . (70)
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6 Regularization

The solution for the general intermittency expansion in Corollary 5.1 is formal and needs
to be regularized, i.e. we need to sum the divergent series in (58). The regularized solu-
tion must correspond to a valid positive probability distribution having the correct integral
moments given by the Selberg integral in (41). In addition, it must reproduce (58) as its
asymptotic expansion in the small intermittency limit. A solution with these properties is
given in Theorem 6.3 below. The question of uniqueness of such a solution is open, hence
we will write M̃μ to distinguish our construction from the limit lognormal distribution as
defined in Sect. 2.

We begin by regularizing the expansion for the Mellin transform in (54). In [23] we
proposed to sum it by means of

∞∑
r=0

μr+1

r + 1
br(q) ∼

∫ ∞

0

[
1

ex − 1

[
e

μx
2 (q+1) + 2e

μx
2 q − 3 + e

μx
2 (q−1) − e

μx
2 (2q−1)

e
μx
2 − 1

− (1 + q + qe
μx
2 )

]
+ e−x

[
e

μx
2 (2q−1) − e

μx
2 (q−1)

e
μx
2 − 1

− q

]]
dx

x
� D(q).

(71)

The meaning of ‘∼’ is that the series
∑∞

r=0 μr+1 br(q)/(r + 1) is the asymptotic expansion
in μ of the integral on the right-hand side of (71) that we denote by D(q). The integral is
convergent for �(q) < 2/μ. Hence, we define the Mellin transform by

E
[
M̃q

μ

]
� exp(D(q)), �(q) <

2

μ
. (72)

The motivation for this particular way of summing the divergent series in (54) is explained
in the following theorems that were established in [23].

Theorem 6.1 For real integral values of q such that −2/μ + 1/2 < q < 2/μ the series
in (54) and convergent and satisfies

∞∑
r=0

μr+1

r + 1
br(q) = D(q). (73)

In addition, for positive integral q such that q < 2/μ we have

exp(D(q)) =
l−1∏
k=0

Γ (1 − (k + 1)μ/2)Γ 2(1 − kμ/2)

Γ (1 − μ/2)Γ (2 − (l + k − 1)μ/2)
. (74)

Theorem 6.2 Given 0 < μ < 1, the function q → exp(D(iq)), q ∈ R, is the characteristic
function of an infinitely divisible distribution.

In summary, Theorem 6.2 says that for every 0 < μ < 1 exp(D(iq)) is the characteristic
function of some random variable that we call log M̃μ. In other words, μ → M̃μ is a family
of random variables that are parameterized by μ. Hence exp(D(q)) is the Mellin transform
of the random variable M̃μ, whose positive integral moments coincide with the known mo-
ments of the limit lognormal distribution by Theorem 6.1 for every μ. Finally, the small
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intermittency expansion of this Mellin transform coincides with the intermittency expansion
of the limit lognormal distribution by construction E[M̃q

μ] ∼ exp(
∑∞

r=0 μr+1 br(q)/(r + 1))

as μ → +0. We conjecture that the two are the same Mμ = M̃μ.

We can now state the main result of this section, which gives the regularized solution for
the general transform in an operator form.

Theorem 6.3 Let M̃μ be the probability distribution defined by (72). Then,

E[G(s + log M̃μ)] = exp

(
D

(
d

ds

))
G(s). (75)

The small intermittency asymptotic expansion of E[G(s + log M̃μ)] coincides with the inter-
mittency expansion in (58)

E[G(s + log M̃μ)] ∼

∞∑
n=0

Gn(s)
μn

n! as μ → +0. (76)

The action of the operator D(d/ds) is given by

(
D

(
d

ds

)
f

)
(s) =

∫ ∞

0

dx

x

[
1

ex − 1

[
e

μx
2 f (s + μx/2) + 2f (s + μx/2) − 3f (s)

e
μx
2 − 1

+ e− μx
2 f (s + μx/2) − e− μx

2 f (s + 2μx/2)

e
μx
2 − 1

−
(

1 + df

ds
+ e

μx
2

df

ds

)]

+ e−x

[
e− μx

2 f (s + 2μx/2) − e− μx
2 f (s + μx/2)

e
μx
2 − 1

− df

ds

]]
. (77)

Proof The formula for D(d/ds) in (77) is immediate from (71). It follows that exponentials
are its eigenfunctions

D
(

d

ds

)
eqs = D(q)eqs, (78)

for any fixed q ∈ C. Now, the proof of (75) follows from Fourier inversion. Indeed, by
Theorem 6.2, the probability density function of log M̃μ is

pdflog M̃μ
(x) = 1

2π

∫
R

e−iqxeD(iq) dq. (79)

Denote (F G)(q) the Fourier transform of G(s)

(F G)(q) �
∫

R

e−iqsG(s) ds. (80)

Then, the left-hand side of (75) is

E[G(s + log M̃μ)] = 1

2π

∫
R

eiqseD(iq)(F G)(q)dq. (81)

This is exactly the same as the right-hand side of (75) if we express G(s) as the inverse
Fourier transform of (F G)(q) and recall (78).
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The proof of (76) was effectively given in Sect. 5. In fact, as Corollary 5.1 and (71)
involve the same infinite series, the result follows from the fact that this series is the small
intermittency asymptotic expansion of D(q). �

The action of the operator D(d/ds) determines the distribution of M̃μ uniquely. The
actual calculation of its action is as difficult as the task of Fourier inverting exp(D(iq)). For
this reason, it is interesting to characterize the distribution in an alternative way by means of
a set of invariants that capture it uniquely. One such set of invariants is the set of all positive
integral moments of log M̃μ, for we showed in [23] that the associated moment problem is
determinate. Their computation is presented in the next section.

7 Calculation of the Cumulants

In this section we are interested in the positive integral moments of log M̃μ. Faà di Bruno’s
formula and (72) imply that they can be expressed as exponential Bell polynomials

E[(log M̃μ)n] = Yn(D(1)(0), . . . , D(n)(0)). (82)

The quantity D(p)(0) denotes the pth derivative of D(q) with respect to q at q = 0. The
moments can also be computed recursively by means of (69)

E[(log M̃μ)n+1] =
n∑

r=0

(
n

r

)
E[(log M̃μ)n−r ]D(r+1)(0). (83)

Hence, it is sufficient to compute D(p)(0), i.e. the cumulants of log M̃μ.

It is worth emphasizing that D(q) is also a function of the intermittency parameter μ.

The dependence of D(q) on μ is not analytic and leads to the asymptotic intermittency
expansions that we considered in Sect. 5. On the other hand, D(q) is analytic in q on �(q) <

2/μ. It is this dependence that we will consider in this section.
The starting point of our analysis is the following formula for the Mellin transform

that we established in [23], which extends Selberg’s finite product to an infinite product
of gamma factors.

Theorem 7.1 Let D(q) be as in (71) and �(q) < 2/μ. Then,

exp(D(q)) =
(

2

μ

)q

Γ (1 − μq/2)Γ −q(1 − μ/2)
Γ (2 + 2/μ − 2q)

Γ (2 + 2/μ − q)
(84)

×
∞∏

n=1

(
2n

μ

)2q
Γ 3(1 − q + 2n/μ)

Γ 3(1 + 2n/μ)

Γ (2 − q + 2n/μ)

Γ (2 − 2q + 2n/μ)
. (85)

We are now primarily interested in the logarithm of the infinite product term in (85) because
it is the core of the structure of the Mellin transform.

Theorem 7.2 Let q be such that |arg(−q)| < π and �(q) < 1/2 + 1/μ. Then,

log

[ ∞∏
n=1

(
2n

μ

)2q
Γ 3(1 − q + 2n/μ)

Γ 3(1 + 2n/μ)

Γ (2 − q + 2n/μ)

Γ (2 − 2q + 2n/μ)

]
(86)
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= qμ

∫ ∞

0

[
e−t

2t
+ 1

et − 1

[
1

eμt/2 − 1
− 2

μt

]]
dt + log

Γ (1 + μ

2 (1 − 2q))

Γ (1 + μ

2 (1 − q))
(87)

− 2

πi

∫ 5/2+i∞

5/2−i∞

π(−q)s

s sin(πs)

( ∞∑
k=1

ζ(s,1 + 2k/μ)

)
(1 − 2s−2) ds. (88)

Theorem 7.2 says that the logarithm of the infinite product term in (85) equals the sum of a
term that is linear in q, a term involving two log-gamma functions, and a contour integral
involving an infinite sum of Hurwitz zeta values. This sum

∑∞
k=1 ζ(s,1 + 2k/μ) can thus be

interpreted as being the core of the structure of the Mellin transform. It is bounded on the
contour so that the integral is convergent.

Corollary 7.1 The cumulants of log M̃μ are

D(1)(0) = log

(
2

μ

)
− logΓ

(
1 − μ

2

)
− ψ

(
2 + 2

μ

)
− μ

2
ψ

(
1 + μ

2

)
− μ

2
ψ(1)

+ μ

∫ ∞

0

[
e−t

2t
+ 1

et − 1

[
1

eμt/2 − 1
− 2

μt

]]
dt, (89)

D(p)(0) = (p − 1)!
[
(2p − 1)ζ

(
p,2 + 2

μ

)
+

(
μ

2

)p

(2p − 1)ζ

(
p,1 + μ

2

)

+
(

μ

2

)p

ζ(p) + 4(1 − 2p−2)

∞∑
k=1

ζ

(
p,1 + 2k

μ

)]
, p = 2,3,4, . . . . (90)

In view of the fact that the moment problem of log M̃μ is determinate, the cumulants D(p)(0)

capture the distribution of log M̃μ uniquely.

Proof Let ak � 1 + 2k/μ. Then the logarithm of the infinite product in (86) is the limit of
the sum SN

N∑
k=1

[2q log(ak − 1) + 3 logΓ (ak − q)/Γ (ak) + logΓ (1 + ak − q)/Γ (1 + ak − 2q)] (91)

as N → ∞. It is easy to show that this sum equals

SN =
N∑

k=1

[2q log(ak − 1) + log(ak − q) − log(ak − 2q) − 2qψ(ak)

+ 4(logΓ (ak − q)/Γ (ak) + qψ(ak)) − (logΓ (ak − 2q)/Γ (ak) + 2qψ(ak))]. (92)

We now need the following identity, which is an extension of an identity that appears in
Sect. 13.6 of [30],

logΓ (a + z) − logΓ (a) = zψ(a) + z2

2
ζ(2, a) − 1

2πi

∫ 5/2+i∞

5/2−i∞

πzs

s sin(πs)
ζ(s, a) ds. (93)
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The original identity involves the contour �(s) = 3/2, which we shifted to �(s) = 5/2 by
picking up the residue at s = 2. In general, we have

Res

[
πzs

s sin(πs)
ζ(s, a), s = m

]
= (−z)m

m
ζ(m,a), m = 2,3,4, . . . . (94)

The identity in (93) holds for a > 0, |arg(z)| < π. It follows that the limit equals

lim
N→∞

SN =
∞∑

k=1

[2q log(ak − 1) + log(ak − q)/(ak − 2q) − 2qψ(ak)] (95)

− 2

πi

∫ 5/2+i∞

5/2−i∞

π(−q)s

s sin(πs)

( ∞∑
k=1

ζ(s, ak)

)
(1 − 2s−2) ds. (96)

Using the well-known identities, confer Chap. 3 of [29],

ψ(1 + z) = log(z) +
∫ ∞

0
e−tz

(
1

t
− 1

et − 1

)
dt, �(z) > 0, (97)

log(z) =
∫ ∞

0
(e−t − e−tz)

dt

t
, �(z) > 0, (98)

we get

2q(log(ak − 1) − ψ(ak)) = 2q

∫ ∞

0
e−t (ak−1)

(
1

et − 1
− 1

t

)
dt, (99)

log(ak − q) − log(ak − 2q) =
∫ ∞

0

dt

t
[e−t (ak−2q) − e−t (ak−q)]. (100)

Summing over k, we obtain for the infinite sum in (95)

∫ ∞

0

[
2q

(
1

et − 1
− 1

t

)
1

e2t/μ − 1
+ (e−t (1−2q) − e−t (1−q))

1

t (e2t/μ − 1)

]
dt. (101)

Changing variables t ′ = 2t/μ, we get

∫ ∞

0

[
μq

(
1

eμt/2 − 1
− 2

μt

)
1

et − 1
+ (e−μt(1−2q)/2 − e−μt(1−q)/2)

1

t (et − 1)

]
dt. (102)

Finally, by Malmsten’s formula,

logΓ (1 + z) =
∫ ∞

0

(
e−tz − 1

et − 1
+ ze−t

)
dt

t
, �(z) > −1, (103)

log
Γ (1 + μ

2 (1 − 2q))

Γ (1 + μ

2 (1 − q))
=

∫ ∞

0

[
−q

μ

2
e−t + e−μt(1−2q)/2 − e−μt(1−q)/2

et − 1

]
dt

t
. (104)

The result follows.
The proof of Corollary 7.1 is straightforward by computing the contour integral in (88)

for sufficiently small |q| using the residue calculus and (94). �
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The infinite sum of Hurwitz zeta values in (88) can be easily converted to a real integral
using the definition of Hurwitz zeta or to a contour integral over a Bromwich contour using
Mellin summation. The resulting formulas are

Γ (s)

∞∑
k=1

ζ(s,1 + 2k/μ) =
∫ ∞

0

1

(exp(t) − 1)

1

(exp(2t/μ) − 1)
t s−1 dt,

= 1

2πi

∫ c+i∞

c−i∞

(
2

μ

)−w

Γ (w)Γ (s − w)ζ(w)ζ(s − w)dw.

(105)

The second integral is convergent provided

1 < �(w) < �(s) − 1, (106)

hence the constant c needs to satisfy 1 < c < 3/2 if �(s) = 5/2 as in (88).
In summary, we have given three equivalent representations for the Mellin transform. The

formula in (71) is responsible for the small intermittency asymptotic of the Mellin transform.
The formula in Theorem 7.1 shows that the Mellin transform is an infinite product gener-
alization of Selberg’s finite product. Finally, the third representation given in Theorem 7.2
connects the Mellin transform with the cumulants.

8 Conclusions

We have considered the family of limit log-infinitely divisible (logID) stochastic processes
with an emphasis on the limit lognormal process. Our results can be summarized as follows.

All the members of the limit logID family possess three fundamental invariances: those
with respect to the decorrelation length, scale, and intermittency parameters. These invari-
ances correspond to, in general, nonlocal equations for the limit process that we refer to as
functional Feynman-Kac equations. We have illustrated the technique that converts the for-
mer into the latter by explicitly translating the decorrelation length and scale invariances into
the corresponding functional equations. The scale invariance equation is a partial integro-
differential equation that captures stochastic self-similarity of the limit process, whereas
the decorrelation length equation is a nonlocal ordinary integro-differential equation that
governs how the limit distribution behaves under a particular change of measure. These
equations also determine how the limit distribution depends on the decorrelation length.

The intermittency parameter invariance is of particular importance as the functional equa-
tion that it corresponds to is the rule of intermittency differentiation, which is the best known
handle on the limit distribution. We have reviewed our results on intermittency differentia-
tion and ensuing intermittency expansions in the limit lognormal case, and then completely
determined the structure of the general expansion of the limit distribution. The resulting
formal power series is regularized in a way that is consistent with the known way of regu-
larizing the Mellin transform, i.e. the regularized solution corresponds to a valid probability
distribution with the correct integral moments. Moreover, the regularized solution is shown
to reproduce the general intermittency expansion as its small intermittency asymptotic. It is
given in the form of an explicit integral operator.

The structures of either the Mellin transform or operator formulation of the general trans-
form are quite complex. For this reason it is interesting to characterize the limit distribution
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from an alternative angle. We have succeeded in computing a set of invariants, namely, the
cumulants of the logarithm of the limit lognormal distribution, that capture it uniquely. As a
byproduct of this calculation, we have given a new representation of the Mellin transform.
Its significance is that it splits the Mellin transform into a finite and infinite parts, and repre-
sents the infinite part in the form of a single contour integral. The integrand of this integral,
which is conceptually the core of the structure of the Mellin transform, involves an infinite
sum of Hurwitz zeta values in the integrand.

We have a number of interesting questions that remain unresolved. The rule of intermit-
tency differentiation is not known in the general logID case. In the limit lognormal case,
it is unknown how to invert the Mellin transform so as to compute the underlying density
or how to compute other transforms explicitly, that is, how to evaluate the action of the
aforementioned integral operator on functions other then the exponential. It is not known
whether our method of regularization is unique, i.e. whether there is a probability distrib-
ution that is different from the one constructed in this paper and having the same integral
moments as a function of intermittency and the same asymptotic of the Mellin transform
in the limit of small intermittency as those of the limit lognormal distribution. Finally, we
find it to be most intriguing that the Riemann zeta function appears in the general intermit-
tency expansion and the Hurwitz zeta function appears in the regularized expression for the
Mellin transform, which makes us wonder whether there is some connection between the
limit lognormal distribution and analytic number theory.
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